SQL series

Advanced
SQL
Concepts

With Code Examples

Advanced Level

save for later]

Advanced SQL Concepts

This presentation will cover several advanced SQL
topics, including Window Functions, Recursive
Queries with CTEs, Advanced Joins and
Subqueries, and more.

These concepts are essential for working with

complex data and solving intricate problems using
SQL.

follow for more

Window Functions

Window Functions are a powerful feature in SQL
that allows you to perform calculations across a set
of rows related to the current row. They provide a
way to compute running totals, moving averages,
rankings, and other analytical calculations.

CREATE TABLE sales data (
product_name VARCHAR(100),
category VARCHAR(50),
sales DECIMAL(1G, 2)

)3

INSERT INTO sales_data (product_name, category, sales)
VALUES

' ry 1', 1000.00),

eqory 1', 2000.00),

eqory 2', 1500.00),

ategory 2', 2500.00);

‘Caten
I

dl

sales data;

Swipe next ——

save for later]

Example

This query calculates the total sales for each
category using the SUM window function with the

PARTITION BY clause.

product name,
categor Y.

sales,;

TITION BY category) AS category total sales

sales data:

Swipe next ——

follow for more

Recursive Queries with

CTEs

o9 e

CREATE TABLE employees |

employee id INT PRIMARY KEY,

employee_name VARCHAR(180),

manager_id INT,

FOREIGN KEY (manager_1id) REFERENCES employees(employee_id)
)
INSERT INTO employees (employee_id, employee_name, manager_id)
VALUES

i1, ohn Doe', NULL),

| £, ane smith', 1),

"

4
J L

|
(
[
(

Swipe next ——

save for later]

Example

This recursive CTE traverses the employee
hierarchy, starting from the top-level managers,
and retrieves all employees with their respective
levels in the hierarchy.

208

WITH RECURSIVE employee_hierarchy A5 (
SELECT
employee_id,
manager_id,
employee_name,
1 AS :: awel
FRO
employees
WHERE
manager_1id IS5 NULL
LUNION ALL

SELECT

el L + 1
FROM
employeas &

INNER JOIN employvee hierarchy sh ON e

L
FROM
employea hiararchy;

Swipe next ——

follow for more

Advanced Joins and
Subqueries

R N

CREATE TABLE products |

product_id INT PRIMARY KEY,

product_name VARCHAR({18@]),

category_1id INT,

FOREIGN KEY (category_id) REFERENCES categories(category_id)
1H

LREATE TABLE categories |
category_id INT PRIMARY KEY,
category_name VARCHAR{S5@)

)

CREATE TABLE sales_data (

sale_1d INT PRIMARY KEY,

product_id INT,

sales DECIMAL(1@8, 2),

FOREIGN KEY (product_id) REFERENCES products(product_id)
)

INSERT INTO categories (category_id, category_name)
VALUES

(1, 'Category 1'),

(Zz, 'Category 2'):

INSERT INTO products (product_id, product_name, category_id)
VALLES

(l; "Product A'; 1),

(2, "Product B', 1},

{3, "Product y 21,

(4, 'Produ + AP 5 -

INSERT INTD sales data (sale_ 1d, product_1id, sales)
VALUES

10608.88),

S50@8.88),

2000.80),
. 1508.60), Swipe next ——
2500.80);

save for later]

Example

This query combines data from the products and
categories tables using an inner join and calculates
the total sales for each product using a correlated
subquery.

SELECT
SUM{ sales)

FROM
sales_data sd
WHERE
sd.|
) AS total_sales
FROM
products p
INNER JOIN categories c ON p

Swipe next ——

follow for more

Window Functions:
Ranking Functions

This query ranks the products within each category
based on their sales, using the RANK window
function. (Use the sales_data table)

299

SELECT
profguct _name,

category,

cales,

RANK{) OVER (FARTITION BY category ORDER BY sales DESC) AS rank_by sales
FROM
sales data:

Swipe next ——

save for later]

Recursive Queries:
Generating Hierarchical

Data

This recursive CTE generates a calendar table with
dates from January 1, 2023, to December 31, 2023.

200

WITH RECURSIVE calendar AS (

SELECT
CAST(£L025-01-0L1" A5 DATE) AS datE_valuE,
1 AS level

UNION ALL

SELECT
DATEADD(DAY, 1, date value),
level + 1

FROM
calendar

WHERE

date_value <

)
SELECT

date value
FROM

calendar
ORDER BY

date value;

Swipe next ——

follow for more

Advanced Joins: Self-Joins

This query uses a self-join on the employees table
to retrieve the employee names and their
corresponding manager names. (Use the
employees table from Slide 3.)

N N

SELECT
el i ime AS employee,

2 i A5 manager

employees el
INNER JOIN employees e2 ON el

Swipe next ——

save for later]

Subqueries in the FROM

Clause

This query uses a subquery in the FROM clause to
retrieve the product name, category, and sales
data, and then calculates the total sales for each
category. (Use the sales_data table)

SELECT

category,

SUM(sales) AS total sales
FROM

(

SELECT
product_name,
category,
sales

FROM
sales_data

) AS product_sales
GROUP BY
category;

Swipe next ——

follow for more

Advanced Analytic Function

This query demonstrates the use of the LEAD, LAG,
FIRST_VALUE, LAST_VALUE, and NTH_VALUE,
which allow you to perforrn complex data analysis
and calculations based on the ordering and
partitioning of rows.

CHEATE TABLE stock prices |

B !1-:Iv:_ symbol VARCHAR[LD},

Swipe next ——

save for later]

SELECT

annk_ﬁymbn].

trade date,

open_price,

cloge price,

LAG(open price, 1) OVER (PARTITION
AS previous_day_opan
FROM

stock prices;

Btock symbol ORDER BY trade date)

SELECT

stock symbol,

trade date,

open price,

cloae price,

I..'-ZJ'l.r:'l'!".-"H:i-'_‘-_F-I':H.'H"-_.. 1} OVER (PARTITION BY :-'.r,n:l-:__!:',.'.—nﬁ'l ORDER BY
trade date) AS next day cloEe
FROM

stock prlices;

BELECT

stock symbal,

trade date,

open price,

close price,

FIRST VALUE({open price) OVER (PAR 'ICH BY stock symbol ORDER BY
trade date) AS first open price,

LAST VALUE|close price) OVER [(PARTITION BY stock : gymbol ORDER BY
trade date ROWS BETWEEN UNBUHNDED PRECEDING AND UNBMNDED FOLLOWING) AS
innt_c1nnnmpricr
FROM

gtock Eymbol,

trada_date,

IZ:I'_JI:!I:I_ ML ECE

cloga priee,

NTH VALUE(close price, I} OVER (PARTITION BY stock symbol ORDER BY
trade date ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS
second close price
FROM

stock_prices; Swipe next ——

follow for more

Recursive Queries -
Generating Sequences

Recursive queries can be used to generate
sequences of numbers or dates, which can be
useful for various purposes, such as generating test
data or handling gaps in sequences.

WITH RECURSIVE number sequence AS (
SELECT 1 AS num
UNION ALL
SELECT num + 1

FROM number sequence
WHERE num < 100

)
SELECT num

FROM number sequence;

This recursive CTE generates a sequence of
numbers from 1to 100.

Swipe next ——

save for later]

Correlated Subqueries

Correlated subqueries are subqueries that
reference columns from the outer query. They can
be used to perform complex filtering or
calculations based on data from the outer query.

N N

CEEATE TABLE orders |
id INT PRIMARY KEY.
mer id INT,
order date DATE ;

total amount DECIMAL(10, 2)

T INTO orders (order 1id;, customer id, order date, total amount)

PR AL 0 L I T

1
1,

Swipe next ——

follow for more

Example

While OOP offers many benefits, it's essential to be
mindful of potential pitfalls, such as complexity due
to deep inheritance hierarchies, tight coupling
between classes, and misuse of design patterns.
Striking the right balance and following best
practices is crucial for maintainable and scalable
code.

SELECT
customer_1id,
order_1id,
order_date,
total _amount,

(

SELECT MAX(total _amount)
FROM orders o2

WHERE 0.« tomer_1d = o0l.
AND o2.order_date < ol
) AS previous_max_order
FROM
orders ol;

save for later D

Pitfalls and Best Practices

While advanced SQL concepts provide powerful
capabilities, it's important to be aware of potential
pitfalls and follow best practices:

Optimize queries for performance, especially
when dealing with large datasets or complex
operations.

Ensure data integrity and consistency when
using recursive queries or hierarchical
structures.

Test thoroughly and validate results, especially
when working with complex queries.
Consider using database views or stored
procedures for code organization and
maintainability.

Document your SQL code for better
collaboration and future reference.

